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Fluctuation properties of strength function phenomena: A model study

Hirokazu Aibal* Shoujirou Mizutori>" and Toru Suzukd
YYukawa Institute for Theoretical Physics, Kyoto University, 606-01 Kyoto, Japan
2Joint Institute for Heavy lon Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37831
3Department of Physics, Tokyo Metropolitan University, 192-03 Hachioji, Japan
(Received 4 September 1996; revised manuscript received 20 Decembgr 1996

We study fluctuation properties of strength function phenomena by employing a quantum mechanical model
where a single parent state couples with a large number of background states. The background system is
devised in such a way that the classical dynamics of the system may show a regular, an irregular, or a chaotic
character as a function of a single parameter. The coupling of the parent state to the background states produces
a fragmentation of the parent state, giving rise to a strength function phenomenon. We study various measures
of the strength function that characterize its bulk structure or fluctuation properties. They include energy
moments, strength distribution, fractal dimensions of the strength function, and Fourier transform of the
autocorrelation function. Some of these measures, such as strength distribution or Fourier transform of the
autocorrelation function, reflect characteristic aspects of the dynamics of the background system, i.e., if they
have a regular or a chaotic character, while measures such as energy moments or fractal dimensions are rather
insensitive to the dynamic§S1063-651X97)01406-3

PACS numbegps): 05.45:+b, 05.40+j, 03.65.Sq

[. INTRODUCTION an average structure of the strength function which would be
specific to the detailed dynamics of the system, at least some
In finite quantum mechanical many-body systems such asf the fluctuation properties are believed to be universal, i.e.,
nuclei, hadrons, or clusters, detailed spectroscopic studiesharacteristic to a class of many complex systé#is The
have been carried out from which much information on thestrength distribution, for instance, is one of many quantities
dynamics of the complex quantum system can be extracteavhich reflect fluctuation properties of the strength function.
Sometimes the energy spectrum alone provides a clue to tha particular, it contains no information on the energy-
dynamical nature of the system: Rotational spectrum, e.g., istrength correlation. The latter may be reflected in other
a typical example for such a case. It is more common, howguantities constructed from the strength function, e.g., the
ever, that a detailed knowledge can be obtained from theautocorrelation function of the strength.
response of the system to an external field which couples to The purpose of the present paper is to study various fluc-
a specific degree of freedom of the system. We hereafter calliation properties of the strength function of a model quan-
the strength of a response as a function of energy the strengtbm system and to investigate possible signatures which may
function. reflect an underlying dynamical character of the system. The
In many cases an emphasis is placed on the otk model system is devised so as to generate a strength function
grosg properties of the strength function, e.g., the peak powhich would cover different dynamical structures. More spe-
sition and its strength, or the width of the main peak, etccifically, the strength function phenomenon in our model
Many of these quantities are related to low ordenergy  system arises as a result of the coupling of a single parent
moments of the strength function, and are often constrainegtate with a large number of background states, the latter
by a sum rule. Our main interest in this paper is, howeverbeing classically integrable or chaotic depending on the
concerned more with the fluctuation properties of thevalue of a single parameter. For this system we calculate
strength function. One of the quantities which reflects such @everal quantities which characterize the structure of the
fluctuation property is the strength distribution. Already in strength function. The present paper is an extension of the
the 1950s a study of the neutron strength function in nuclei astudy in our previous papdi5] where a slightly different
low energies revealed that the strength distribution shows model has been used. The choice of the coupling Hamil-
significant statistical feature, the Porter-Thomas-type distritonian in this paper, in particular, would be more suitable
bution, which is obtained from the random matrix theorybecause the sum and the width of the strength are conserved
[1,2]. Recently the fluctuation properties of energy spectrdor different parameters.
and strength functions have been studied from the viewpoint The paper is organized as follows. In Sec. Il the model is
of “quantum chaos,” for instance, see RE3]. In contrastto  presented. We consider also a model based on the random
matrix which is used as a reference of a fully chaotic system.
It is another purpose of the present paper to clarify whether
*Permanent address: Koka Women's College, 38 kadono-chwe can see the differences between the dynamically chaotic

Nishikyogoku, Ukyo-ku, 615 Kyoto, Japan. case and the case of the random matrix model in the fluctua-
"Present address: Department of Physics, Kyoto Universitytion of the strength function. Strength function of the system
606-01 Kyoto, Japan. is calculated and analyzed in Sec. Ill. Energy-weighted mo-
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ments and the strength distribution are studied in detail. "Vcoup| must be simple enough to make an analysis. One pos-
Sec. IV we perform a moment analysis based on a partitiogible choice adopted in this paper is

function similar to the one developed for a multifractal sys-

tem. This may serve as one possible measure of the energy-

strength correlation. The autocorrelation function of the Veoup=x(K) 2 (Je){u|+H.c). (2.9
strength function is also an interesting quantity which re- a

flects the fluctuation properties of the strength function. WeThis means that the state) couples with every basis state of

calculate the Fourier transform of the autocorrelation funcs .
e . . ; ~the background with an equal strengttk). The actual cou-
tion in Sec. V and compare with previous studies made i g d )

! L . r’bling matrix elements of the stafe) to the eigenstates of the
gltjhrﬁrrn;/;tems{ﬁ]. The final section is devoted to a brief background system are then given by

Il. MODEL UiE<C|Vcoup“>:X(k)% (uli). (2.6

A. Formulation of the model

. . . hese matrix elements reflect the complexity of the ampli-
The model space is composed of a single state, which W%Jdes of the statels). It will be shown later thav; show a

call a parent state from now on, and some large number o )
background states, random behavior when the background system becomes cha-

otic. Note that the present choice of the coupling is slightly
{ley]id;i=1,... Npg- (2.1  different from that adopted in our previous papgf.
The classical or quantal featureslgf,, have been stud-
The statdc) represents the parent state with an unperturbeéd in detail; for instance, see Ref9~13. The procedure of
energye, the strength function of which is a main focus of diagonalization oH .y is also explained there. Thus we de-
this paper. The statel$) represent the background states. scribe here only the actual values of parameters adopted in

The total Hamiltonian is given by the numerical calculation.
We adopted three values of the paramétém H,,,, i.e.,
H=H:+Hpg+ Veoupl- (22 k=0.0, 0.2, and 0.6. They are considered as typical values
for an integrable, partially irregular, and almost chaotic sys-
Here,H. acts only on the state) and is written as tems, respectively. As for the background stdtgésve con-
sider only those eigenstates bff,,, which belong to one
H.=€|c){c|, (2.3  symmetry class, i.e., that symmetric in they, and diagonal

directions.H 4. is diagonalized within a large space which is
Hp,g acts on the background stafés andV ., represents a  composed of 5776 basis states having the same symme-
coupling between the stafe) and the statef§). We adoptas try. The values of frequency) of the uncoupled two-
the HamiltonianH 4 of the background system a coupled dimensional harmonic oscillator, determined so that the trace
two-dimensional anharmonic oscillator characterized by af H_,,in this space is minimized, are 8.4438, 7.5, and 7.15
single parametek, for k=0.0, 0.2, and 0.6, respectivel§]. We then pick up the
lowest 800 Ny eigenstates oH,,, as the background
Hpg=a(k)Hann, (2438 statedi). The parametea(k) is adjusted so that the energies
of the background states are scaladk) =400/kwgy3 . This
makes the mean level densities of the background states for
differentk values to be constant, i.ea=2.0.
The value ofe is fixed to 200, so that the state) is
As the value of the parametkrincreases, the classical phase located in the middle of the background 800 states, and thus
space structure of the Hamiltoni&hy,,,changes from regular a large number of background states can be found in the
to almost completely chaotic charactgTg The state$i) are  neighborhood.
eigenfunctions oH 4, and hence oHyy. The energy of the The coupling strengtly(k) is determined so that the sum
state|i) associated withd,y is denoted byw; whose value is ~ of v? is independent ok, and is fixed by the condition
scaled bya(k) from the original eigenvalue®R® of Hyy,.  28%0v2=

1
Hann=> (P py+ x4y —koy?. (2.4b

i—107=800. This implies that the average coupling
We introduce the parameta(k) in order that the mean level strength of the statéc) to the background states remains
density of the background system remains the same for vargonstant, which allows us to make a fair comparison of the
ous k. As basis states for the diagonalization ldf,,, we results for differentk values. The resulting values af(k)
took eigenstates of an uncoupled two-dimensional harmoniare 0.670, 0.714, and 0.638 flo+=0.0, 0.2, and 0.6, respec-
oscillator with frequency)(=Q,=1,). They are denoted tively. One may notice thak(k) would be constant if the
by | ), whereu stands for a pair of integers, i.e., numbers of number of the basis stat¢g) is kept equal to that of the
oscillator quanta in the& andy directions. The value of) adopted state$i). We included many more states in the
was determined for eadhso as to optimize the diagonaliza- former since at least for large a mixing of the basis states
tion [8,5]. should be important to fully retain the fluctuation properties
The strength function of the parent state depends on thef the eigenstates.
choice ofV¢q,,. Since our purpose is to study the effect of ~ The strength function of the parent stded is then de-
the background system dynamics on the strength functiorfined by
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structure of the strength function, let us consider ttik
S(E)E; S(E-EnS,, (278 energy central momeritl5] of the strength function\{",
which is defined as

(n) — _ n
S.=l(cIn)l?, (2.79 Mg"=((E—(E))", (3.1

where(E") is also defined as

where|n) denotes an eigenstate of the total system Bpd
the corresponding eigenvalue. <E”)EJ E"S(E)dE. (3.2

Table | lists the calculated results fan{" for n=3 to 10 at
the three choseh values. It includes also those for a sche-

We consider another model for comparison, which wematic Lorentzian-type strength function for a comparison. It
call the random matrix model. It is essentially the same ass gefined as

that used in Refl14]. We consider an ensemble of systems,
each of which is similar to the one presented above except N
for the choice of the background system. Here the back- S(Ey) = (E.— o2+ (122’
ground state$i) are obtained by diagonalizing each realiza- "
tion of the random matrices which obey the Gaussian or- 1
thogonal ensemblg GOE) [2]. The eigenvalues of the Enzi(n—l) (n=1,...,80), €=200 (3.3
random matrix are distributed according to the semicircle
law between—N/2 andN/2 whereN denotes the dimension
of the matrix, and the mean level densjyunity. We fix
N=Np,=800. The energy of the parent stqt is fixed to
zero so that it is always located just in the middle of the ((E=(E)™={(c|(H—€)"c), (3.4)
background statel$). As for the coupling between the state
|c) and the background states, we take the same form as Eghe values of the average and the variance are constrained as
(2.5, and replace the statgg) with the basis states for the
diagonalization of the random matrix. The coupling strength
is fixed aty=2.0 so thap?Zv2=3200 and is equal to that of
the model in the preceding subsection. The strength function
is again defined in the same manner. and are independent of the paramedtefFrom Table |, we
can see that the values g#" up ton=10 are similar to

Ill. STRENGTH DISTRIBUTION each other for all thre& values. We also see that these
values are similar to those for a schematic Lorentzian-type
strength function, although we find a small deviation in the

We first consider the distribution of the coupling matrix odd and the tenth energy moments.

elementsv;. Figure 1 shows the distribution of; for Since the momenM(E”) can be generally written as
k=0.0, 0.2, and 0.6 and for the random matrix model. The
matrix element values fok=0.0 show a concentration at (n)_ (m) ) ne2
around+1. This result is understood from the presence of Me"=f({Mg", m< ”})JrZ vilwi—e)" s,
dominant terms among the coefficieris|i) in the sum of (3.6
Eg. (2.6) for v;. On the contrary, the distribution for
k= 0.6 is almost a Gaussian centered at zero and with widtlvhere the first term represents a polynomial function of
1.0. An inspection of the expressid8.6) suggests that for AM(™’s with m<n, we can explain the above similarity of
k=0.6 the values of u|i) are independently random and A4(™ py showing that the second term of Eg.6) is almost

there are no dominant terms in the sum in accordance witfhgependent of the parameterEquation (3.6) can be easily
the central limit theorem. However, this does not imply thatyqrified if we rewrite M as

the distribution of( u|i) itself, namely, the amplitude distri-
bution of the background states, should follow a Gaussian.

Indeed the amplitude distribution fdc=0.6 has an addi- ME =2 (c|H—eli)i|(H=e)"2i")(i'|H—€lc),
tional peak around zero over the Gaussian-like distribution. i’ 37
This is different from the random matrix model where the '

distribution of (u|i) as well as that of; follow a Gaussian. g, decomposat™ by inserting|c)(c| or=|j)(j| between
. H — € factors; if we inser{c)(c| more than once, we obtain
B. Gross structure of the strength function products of M{™ (m<n). On the other hand, if we insert
Figure 2 shows the strength functi®&E). In spite of the  2;|j){j| into all places, this leads to the second term of Eq.
difference in the distribution of the coupling matrix elements(3.6). This term is actually insensitive to the difference of the
as seen above, the shapesSE) look rather similar to each value of k. This is because the average valueudfas a
other. For the sake of a quantitative discussion on the grodsinction of energy has a similar shape independerk, ais

B. Random matrix model

whereT is fixed so thatM®)=800, and\ is a normaliza-
tion constant. Because of the sum r{l&)]

EaveE<E>:6' UEEM(EZ):Ei Ui2 (3.9

A. Distribution of coupling matrix elements



122 HIROKAZU AIBA, SHOUJIROU MIZUTORI, AND TORU SUZUKI 56

k=0.0 k=0.6
250 , . - T \ T - " T T J
200 4 ] 1 1004 B T
150 -} N A A
o)
£ o T |\~
5 2 A1+
(@] Q 50 ] .
¢ 100 - — 1 O .
N
50 - ) T ]
AA . x[—v—‘\A 0
° 2 o ' 2 ‘ 4 4 2 0 2 4
\
v, i
k=0.2 RM 1-3
150 - T T T 300 T T T T T T
] — 1 250 /(]_ b
100 - N 4 200 - B XK N
0 [ 12} 1 ZZ
< /\ { € 1504 W T
S
] > | _
QO O
50 - . 100 - 4
m | B |
# ¥ o] + + t + + +
0 - - - 0

V. V.
i

FIG. 1. Distribution of the coupling matrix elemenis for three values ok and also for the random matrix model. For the latter case,
the result for three choices of realization is presented. The smooth curves show a normalized Gaussian distribution having the same width
as that of they; distribution for each case.

can be seen in Fig. 3, which shows dependence of the C. Strength distribution
averaged value of? defined as The apparent similarity of the strength function for differ-
entk values seen in the preceding subsection is only super-
) ficial. To see this let us turn our attention to the strength
Uj distribution. The distribution is known to take the Porter-
(3.9 Thomas(PT) form for a pure random matrix, i.e., without
1 coupling considered in this paper. In Fig. 4 we plot the
0— (12 do<o;<w+(1/2)dw strength distribution for threk values together with the PT
shape. Although not very clear, a tendency towards the PT
Here we tookdw=20. Moreover, this is also because the distribution can be seen &sincreases. A much clearer dif-
local level density of the background states is independent derence can be seen if we plot the distribution of the renor-
k. Thus we do not find significant difference in the grossmalized amplitude\'S\\”, where
structure of the strength function as characterized by the low -
energy moments. SY=S{(E,— €)%+ (I'/2)%} (3.9

o— (12 doswjsw+(1/2)dw

Vad ©)=
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FIG. 2. Strength functiorS(E) for the three values df and also for the random matrix model. For the latter case, the result for one
choice of realization is presented.

is the strength corrected for the energy-dependent factowhich the mean square valuezquivesUizzl and the mean
This factor has been introduced to remove approximately th@ye| distance i~ 0.5 for our model of the oscillator back-
energy denominator contribution: if we assume constant couground system, and?=4, D~1.0 for the random matrix
pling matrix elementw;=v; and an equal level distance model. We thus choosE=4m and 87, respectively, for

D¢ in our model, the strength function will be given by these models. The results are given in Fig. 5. The smooth
S(E)=(I'/2m)/{(E—€)?+('/2)?}, where T'=2mv%D. curve shows a Gaussian distribution which would show up in
[16]. This may be contrasted to the present calculation irchaotic systems as represented by the random matrix theory

TABLE I. The nth energy moment of the strength functifm(E”) divided byog.

k 3rd 4th 5th 6th 7th 8ttfunits of 1d) 9th 10th(units of 16)
0.0 —0.068 17.889 —2.840 547.10 —124.78 1.9843 —5664.4 7.8227
0.2 —0.049 17.925  —1.917 549.49  —79.95 1.9980 —3463.0 7.8967
0.6 —0.048 17.851  —1.986 545.00 —86.73 1.9738 —3913.3 7.7709

Lorentzian 0.0 17.530 0.0 527.86 0.0 1.8904 0.0 7.3709
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Ni

yi(N): 2 X, (i=1,2,...
n=N{i-1)+1

il
N || (3.10

namely, the distribution of the sum of neighboring
strengths. Herd, ] stands for the largest integer which is not
larger thanj. To illustrate the effect of summation, let us first
assume that the distribution &f, follows a Gaussian,

21 °
PM(x)= \/;;exz’z"z (f P(”(x)dx:l),
0

(3.11)

and that there is no correlation amorgs; then the distri-
bution of y(® can be calculated as

P (y)= fo fo P (x0) PD(x5) 8y — X1 — X5)dxgl%y

T T T T T T v
0 100 200 300 400
4 N
© = e V| I o Y , (3.12
TOo 2 20
FIG. 3. v? averaged over an energy rangedaf =20 as a func- .
tion of enel;Igy fork:go.o 0.2. and O-é:].y 9 where erfck) denotes the error function,
erfa(x)= fwe’tzdt (3.13
[1,2], although the actual calculation still shows a small de- X ' '

viation. The distributions fok=0.0 and 0.2 are far from the
Gaussian, while that fok=0.6 is much closer. A compari- The distribution ofy(®), P®)(y), is obtained in a similar
son with Fig. 1 shows that the correction factor in E89)  manner. The resul3.12) and that ofP®)(y) show that, as
removes approximately the energy-denominator effect, leadsne may naively anticipate, the peakR#)(y) or PC)(y) is
ing back to the coupling strength distribution which directly shifted to a larger value even if the peakRf)(x) is located
depends on the dynamics of the background system. It wouldt x=0. The same tendency also appears in Fig. 6 where the
be interesting to extend this idea to a realistic system, aldjstributions ofyi(N) (N=2,3) are shown for our model with
though one has first to find how one can optimize parameteng=0.0, 0.2, and 0.6. Although there still remains a differ-
such ad’. ence, it is much more difficult to qualitatively distinguish the
In the actual application to realistic systems, one mushraphs for differenk’s as compared to the case of Fig. 5:
consider also the finiteness of the energy resolution, whiclbne may not be able to determine whether the deviation of
we have neglected above. Can the strength distribution stithe peak from zero is due to the properties of the background
be a signature of the background dynamics even when ongstem or poor resolution. In the case of the empirical data
cannot resolve an individual peak? In order to partly answethe sjtuation is more complex, because the summation of the
this question let us consider the following distributions: de-strengths is made over a given energy interval and not with a
fine x,= \/5517) then consider the distribution of the follow- fixed number of levels. We suspect that the strength distri-

ing quantity: bution alone would not give a clear signature of the dynam-
k=0.0 k=0.2 k=0.6
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FIG. 4. Strength distribution for the three valueskofThe smooth curves show a Porter-Thomas distribution.
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FIG. 5. DistributionP(y/S™) whereS® = S((E— €)2+ (I'/2)2). T is fixed to 4 for k=0.0, 0.2, and 0.6 and8 for the random matrix

model. The smooth curves show a Gaussian distribution. For the random matrix model 50 choices of realizations have been accumulated.

ics of the background system as far as the resolution is ng§endent of the distributio,p(@m)_ Instead of using di-
enough to detect individual strengths. rectly the energy eigenvalug, and the strengtts, we con-
sider the following modified strength function:
IV. FRACTAL ANALYSIS OF THE STRENGTH
FUNCTION

()(E)= _ES
The strength distribution is one of the signatures which (E) ; OE=En)S, @0

characterize fluctuations of the strength function. It reflects
only a part of the structure in the strength function of Fig. 2:
For instance, it does not contain a correlation between thg/hereE denotes the unfolded energy aﬁdthe normalized
energy and the strength. strength in Eq(3.9) with an additional normalization condi-

In this section we perform a moment analysis of thetion Z,S,=1. Let us now divide the whole energy interval
strength function similar to the one applied for a multifractal AE(= Ego1n— Eg s)_into L segments each having a width
system[17,18. This analysis takes into account some fea-sSE=AE/L, WhereEg_S_ represents the energy of the ground
tures of the energy-strength correlation, and therefore can te&ate. We then sum up the strengths within each segment,
another characteristic measure of the strength function indegiving
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FIG. 6. Distribution ofy™ (N=2,3) for three values df. The lines correspond B (y) for y{? andP®(y) for y*® and the dotted
curves a Gaussian. See text for more detail.

- ) because the available energy interval becomes wider than the
Pi= ,thE tSq (J=1,....L), (4.2 case of the former method. Moreover, the scaling property of
(Jth segmen the partition function depends on how “the supportthe

with the normalization conditior;P;=1. The partiton SN€rIy levels in the present case distributed as well as

function is defined by how the strengths are distributed on this support. Since we
would like to focus on the latter, we used the unfolded en-
L ergy in the definition of the modified strength functi¢hl)
Ym(SE)=>, P, (4.3  in order to make the support distribute uniformly. Accord-
j=1 ingly the analysis adopted here can be seen as an improved

version of that in Ref[5].

We then study its behavior as we refine the scale, e.g., as Figure 7 shows the dependence of the partition function
L=2—2%2-2% etc. xm for m=2 to 5 on the scaléE for k=0.0, 0.2, and 0.6.

The reason we consider the modified strength functiotWe also show the one for the random matrix model averaged
(4.1) instead of the original one follows. One of the purposesover 50 choices of the realizations of the ensemble. The re-
of considering the partition functio@.3) is to find whether a sults show a linear dependence in the logarithmic scale
scaling law does hold a8E is refined or whether there are within a wide range offE, suggesting a scaling property of
some typical energy lengths which lead to breaking of thisS()(E). For small SE the partition functiony,, eventually
scaling law. However, there are two typical energy lengths irreaches a fixed value which is the consequence of the dis-
the original strength function, namely, the mean level discrete spectrum in our model.

tance and the width of the strength functibnboth of which Let us consider the fractal dimensi@n, defined by
are out of our interest. The scaling property therefore must

be considered at larger energy resolution than the mean level D= lim Bm(SE) B_(5E) = InXm 4.4
distance. Besides considering the energy resolution smaller ™ el M—17 m InSE" '

thanT, it is another method to use the normalized strength

§n in order to avoid the global energy variation of the In practice, the expression fds,,(6E) has been replaced
strength function. We chose the latter method in this papewith the ratio of the difference of jp,(SE) to that of InSE in
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FIG. 7. xm(SE) versusdE for three values ok as well as for the random matrix model. For the latter case the result of averaging over
50 choices of the realization is presented. The lines correspont=t2 to 5 from the upper to the lower ones.

the appropriate interval ofE. The quantityD,, reflects a relationD,>0.9 holds for allm in the case of the random
state-to-state fluctuation of the strength function. In Table limatrix model, while for the case &=0.0, 0.2, and 0.6, the
we showD, for m=2 to 5 calculated for each line shown in value of D, decreases a1 increases, suggesting a multi-
Fig. 7. The interval of6SE whereD,’s are calculated is in- fractal nature for these systems.
dicated by a box in Fig. 7. From Table II, we find that the  As mentioned in Sec. Il C, the modified strength function
SM(E) can be thought to reflect directly thelependence of
TABLE |l. Fractal dimensionD, (m=2 to 5 atk=0.0, 0.2, p?. Thus we also obtained the partition functigp(si) for
and 0.6 and those for the random matrix mod&MM). v? as a function oBi instead ofsw in the same procedure as
the case oB("(E), and also obtaine®,, which is derived

K D2 Ds D4 Ds from x(461). We found that the results are very similar to
0.0 0.94 0.89 0.84 0.80 the case oB{")(E). This can be understood from Fig. 3. As
0.2 0.94 0.88 0.82 0.78 known from Fig. 3, for the case of our model with an anhar-
0.6 0.94 0.89 0.83 0.79 monic oscillator background;?2,, shows the same depen-
RMM 0.97 0.95 0.93 0.92 dence independent of the value kf For the case of the

random matrix model, however, there is no such dependence
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of v? on w; the averaged value af? is independent ofs.  ground system, while previous worken uncoupled sys-
This difference ofw dependencéor i dependendeof Ui2 temg have studied, in a sense, the wave functions of the
between our model and the random matrix model is reflecte@ackground system itself.
in the difference of the behavior @, between them. Thus Figure 8 shows the square of the Fourier transform
it may not be adequate to use the word multifractal for our(smoothed ovest=0.1) for the three values &fand for the
model, because the behavior Bf, in our model only re- random matrix model. In the latter case an average over 50
flects the smooth energy variation of . choices of the realizations has been made. We notice t_hat as
The studies in this section suggest that it is difficult to findthe background system changes from regular to chaotic be-
out the difference of dynamics of background system in thd1avior the correlation hole becomes deeper in accordance
behavior of the partition functiony( SE) for m=2 at 5E, with the findings qf the previous works. Acgordmg to Ref.
the value of which is larger than the mean level distancel22]: where a survival probability of a two-dimensional dy-

because the energy dependence of the avera@ehbes not hamical system was studied, its asymptotic value becomes
depend on the value df. Nevertheless, the studies Suggestsmaller when the system becomes more chaotic. On the other

that we can find the difference between the dynamically chah@nd: in our model where the parent state couples with a

otic case and the case of the random matrix model in th wo-dimensional dynamical system, the asymptotic value of

fluctuation of the strength function by means of the analysi a. (5'2) b?comes larger when the system becomes more
in this section. chaotic. This contrasted result may be understood as follows:

the inverse of the asymptotic value can be considered as an
effective number of states to which the stade decays. In
V. FOURIER ANALYSIS our model, this state couples with all the b?ﬁs vect)c/)rs of the
In this section we study the Fourier transform of thebackground system with equal strengths. This feature does
strength function which provides another measure of théot change very much for regular systems even after the
energy-strength correlation of the dynamical syster8]. diagonalization of the background system as seen in the dis-
Moreover, this quantity is expected to be insensitive to thdribution of the coupling matrix elements . The basis vec-

experimental resolution of the energy spectriéh tors of the background system, however, will be consider-
We define the Fourier transform of the modified strengthably mixed up for chaotic systems, causing a large
function defined in the preceding section as fluctuation in the coupling. This will result in the reduction

of the effective number of states with which our stété
couples. Note that the behavior of asymptotic value depends
B gt on the choice of the coupling Hamiltonian.
C()=| dE e ='SV(E). (5.1 A remark is in order. We did not see a correlation hole
when we performed a Fourier transform of the original
strength function instead & (E). This may be contrasted
to the correlation hole that appeared when we performed the
Fourier transform of the strength function with unfolded en-
ergies and constant strength.

In the following, we consider the square Gft); it is given
by

c2=> 242 S S, cogE,—E. )t
[C(t)] ; 2 +2 2SSy codEy—En) VI. SUMMARY

n>n’
B it We adopted a model where a parent state couples with a
_f do e'“A(w), (5.2 large number of background states. We took as the back-
ground system a coupled two-dimensional anharmonic oscil-
where lator. The dynamics of this background system have been
chosen classically integrable, irregular, or chaotic by chang-
ing a single parameter. We studied a strength function of the
parent state, paying attention to its fluctuation properties, in
A(“’)ZJ dE S"(w+E)ST(E) (53 order to find out whether differences of the dynamical prop-
erties of the background system could be reflected in the
is the autocorrelation function of the strength function. Thestrength function.
quantity(5.2) would be the survival probability of the system  First we studied some properties of the coupling matrix
to remain at the initial statkc) after timet if one uses the elements between the parent state and the background states.
original strength function instead &". The distribution of the coupling matrix elements is different
The properties of the square of the Fourier transform havavhen the dynamics of the background is different.
recently been studied numerically as well as analytically in We investigated several quantities reflecting a gross struc-
certain systemfs,19-23. It was shown especially that there ture as well as different aspects of the fluctuation properties
occurred a correlation hole at smalvhen the system has a of the strength function. For a quantitative discussion of a
chaotic spectrum. For a regular spectrum, in contrast, thgross structure of the strength function, we considered the
guantity has shown a monotonic decrease to its asymptotienergy moments of the strength function, and found that
value. In the present model system it is agtriori evident if ~ there are no differences. We then studied the distribution of
a similar feature may be obtained. Here we are interested ithe strength. When the background system is classically cha-
the strength function of a state which couples to the backetic, the strength distribution follows a Gaussian similar to
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FIG. 8. Square of the Fourier transform smoothed afer 0.1 of the strength function with unfolded energy and modified strength as
a function of time(measured in unit of 2) for three values ok and also for the random matrix modelverage of 50 casgsThe horizontal
lines denote asymptotic values which correspond to the first term gy, and are 0.0019, 0.0026, 0.0032, and 0.0038 for the above four
cases, respectively.

the case of the random matrix model. On the other hand, asamical nature of the background system changes from inte-
the background system becomes more integrable or regulagrable to chaotic, the correlation hole of the Fourier trans-
it deviates more from a Gaussian. This result is directly atform becomes deeper. The correlation hole is actually related
tributed to the distribution of the coupling matrix elements.to the spacing of unfolded levels. We also found that the
Next we performed a moment analysis of the strength funcasymptotic value of the Fourier transform becomes larger
tion based on the partition function. When the energy resowhen the dynamics of the background becomes more cha-
lution is larger than the mean level distance, the partitiorotic. This is because when the parent state couples with ev-
function reflects only the global energy variation of the cou-ery unperturbed background state with equal strength as in
pling matrix elements thus showing no dependence on theur model, the chaoticity of the background causes a large
parameter of the background system. On the other hand, Hjuctuation in the coupling and reduces the effective number
means of the same analysis we found the difference betweeadf states to which the parent state decays.

the chaotic case and the case of the random matrix model. We stress that the above conclusions depend strongly on
We also studied the Fourier transform of the autocorrelatiorthe coupling Hamiltonian of the parent state and the back-
function of the strength function. It is found that as the dy-ground system. In this paper we took one ansatz as these
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couplings. Other choices may give rise to different results fobe considered. A study of such systems composed of many
the fluctuation characteristics. For instance, if the parent statstates coupling to a background system is now in progress.
couples to only one unperturbed background state, the distri-
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