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Fluctuation properties of strength function phenomena: A model study
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We study fluctuation properties of strength function phenomena by employing a quantum mechanical model
where a single parent state couples with a large number of background states. The background system is
devised in such a way that the classical dynamics of the system may show a regular, an irregular, or a chaotic
character as a function of a single parameter. The coupling of the parent state to the background states produces
a fragmentation of the parent state, giving rise to a strength function phenomenon. We study various measures
of the strength function that characterize its bulk structure or fluctuation properties. They include energy
moments, strength distribution, fractal dimensions of the strength function, and Fourier transform of the
autocorrelation function. Some of these measures, such as strength distribution or Fourier transform of the
autocorrelation function, reflect characteristic aspects of the dynamics of the background system, i.e., if they
have a regular or a chaotic character, while measures such as energy moments or fractal dimensions are rather
insensitive to the dynamics.@S1063-651X~97!01406-2#

PACS number~s!: 05.45.1b, 05.40.1j, 03.65.Sq
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I. INTRODUCTION

In finite quantum mechanical many-body systems such
nuclei, hadrons, or clusters, detailed spectroscopic stu
have been carried out from which much information on
dynamics of the complex quantum system can be extrac
Sometimes the energy spectrum alone provides a clue to
dynamical nature of the system: Rotational spectrum, e.g
a typical example for such a case. It is more common, h
ever, that a detailed knowledge can be obtained from
response of the system to an external field which couple
a specific degree of freedom of the system. We hereafter
the strength of a response as a function of energy the stre
function.

In many cases an emphasis is placed on the bulk~or
gross! properties of the strength function, e.g., the peak
sition and its strength, or the width of the main peak, e
Many of these quantities are related to low order~energy!
moments of the strength function, and are often constrai
by a sum rule. Our main interest in this paper is, howev
concerned more with the fluctuation properties of t
strength function. One of the quantities which reflects suc
fluctuation property is the strength distribution. Already
the 1950s a study of the neutron strength function in nucle
low energies revealed that the strength distribution show
significant statistical feature, the Porter-Thomas-type dis
bution, which is obtained from the random matrix theo
@1,2#. Recently the fluctuation properties of energy spec
and strength functions have been studied from the viewp
of ‘‘quantum chaos,’’ for instance, see Ref.@3#. In contrast to
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an average structure of the strength function which would
specific to the detailed dynamics of the system, at least s
of the fluctuation properties are believed to be universal,
characteristic to a class of many complex systems@4#. The
strength distribution, for instance, is one of many quantit
which reflect fluctuation properties of the strength functio
In particular, it contains no information on the energ
strength correlation. The latter may be reflected in ot
quantities constructed from the strength function, e.g.,
autocorrelation function of the strength.

The purpose of the present paper is to study various fl
tuation properties of the strength function of a model qu
tum system and to investigate possible signatures which
reflect an underlying dynamical character of the system. T
model system is devised so as to generate a strength fun
which would cover different dynamical structures. More sp
cifically, the strength function phenomenon in our mod
system arises as a result of the coupling of a single pa
state with a large number of background states, the la
being classically integrable or chaotic depending on
value of a single parameter. For this system we calcu
several quantities which characterize the structure of
strength function. The present paper is an extension of
study in our previous paper@5# where a slightly different
model has been used. The choice of the coupling Ham
tonian in this paper, in particular, would be more suitab
because the sum and the width of the strength are conse
for different parameters.

The paper is organized as follows. In Sec. II the mode
presented. We consider also a model based on the ran
matrix which is used as a reference of a fully chaotic syste
It is another purpose of the present paper to clarify whet
we can see the differences between the dynamically cha
case and the case of the random matrix model in the fluc
tion of the strength function. Strength function of the syste
is calculated and analyzed in Sec. III. Energy-weighted m
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ments and the strength distribution are studied in detail
Sec. IV we perform a moment analysis based on a parti
function similar to the one developed for a multifractal sy
tem. This may serve as one possible measure of the ene
strength correlation. The autocorrelation function of t
strength function is also an interesting quantity which
flects the fluctuation properties of the strength function. W
calculate the Fourier transform of the autocorrelation fu
tion in Sec. V and compare with previous studies made
other systems@6#. The final section is devoted to a brie
summary.

II. MODEL

A. Formulation of the model

The model space is composed of a single state, which
call a parent state from now on, and some large numbe
background states,

$uc&,u i &; i51, . . . ,Nbg%. ~2.1!

The stateuc& represents the parent state with an unpertur
energye, the strength function of which is a main focus
this paper. The statesu i & represent the background state
The total Hamiltonian is given by

H5Hc1Hbg1Vcoupl. ~2.2!

Here,Hc acts only on the stateuc& and is written as

Hc5euc&^cu, ~2.3!

Hbg acts on the background statesu i &, andVcoupl represents a
coupling between the stateuc& and the statesu i &. We adopt as
the HamiltonianHbg of the background system a couple
two-dimensional anharmonic oscillator characterized by
single parameterk,

Hbg5a~k!Hanh, ~2.4a!

Hanh5
1

2
~px

21py
21x41y4!2kx2y2. ~2.4b!

As the value of the parameterk increases, the classical pha
space structure of the HamiltonianHanhchanges from regula
to almost completely chaotic characters@7#. The statesu i & are
eigenfunctions ofHanh and hence ofHbg. The energy of the
stateu i & associated withHbg is denoted byv i whose value is
scaled bya(k) from the original eigenvaluev i

ORG of Hanh.
We introduce the parametera(k) in order that the mean leve
density of the background system remains the same for v
ous k. As basis states for the diagonalization ofHanh, we
took eigenstates of an uncoupled two-dimensional harmo
oscillator with frequencyV(5Vx5Vy). They are denoted
by um&, wherem stands for a pair of integers, i.e., numbers
oscillator quanta in thex and y directions. The value ofV
was determined for eachk so as to optimize the diagonaliza
tion @8,5#.

The strength function of the parent state depends on
choice ofVcoupl. Since our purpose is to study the effect
the background system dynamics on the strength funct
n
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Vcoupl must be simple enough to make an analysis. One p
sible choice adopted in this paper is

Vcoupl5x~k!(
m

~ uc&^mu1H.c.!. ~2.5!

This means that the stateuc& couples with every basis state o
the background with an equal strengthx(k). The actual cou-
pling matrix elements of the stateuc& to the eigenstates of th
background system are then given by

v i[^cuVcouplu i &5x~k!(
m

^mu i &. ~2.6!

These matrix elements reflect the complexity of the am
tudes of the statesu i &. It will be shown later thatv i show a
random behavior when the background system becomes
otic. Note that the present choice of the coupling is sligh
different from that adopted in our previous paper@5#.

The classical or quantal features ofHanh have been stud-
ied in detail; for instance, see Refs.@9–13#. The procedure of
diagonalization ofHanh is also explained there. Thus we d
scribe here only the actual values of parameters adopte
the numerical calculation.

We adopted three values of the parameterk in Hanh, i.e.,
k50.0, 0.2, and 0.6. They are considered as typical val
for an integrable, partially irregular, and almost chaotic s
tems, respectively. As for the background statesu i & we con-
sider only those eigenstates ofHanh which belong to one
symmetry class, i.e., that symmetric in thex, y, and diagonal
directions.Hanh is diagonalized within a large space which
composed of 5776 basis statesum& having the same symme
try. The values of frequencyV of the uncoupled two-
dimensional harmonic oscillator, determined so that the tr
of Hanh in this space is minimized, are 8.4438, 7.5, and 7
for k50.0, 0.2, and 0.6, respectively@5#. We then pick up the
lowest 800 (5Nbg) eigenstates ofHanh as the background
statesu i &. The parametera(k) is adjusted so that the energie
of the background states are scaled;a(k)5400/v800

orig. . This
makes the mean level densities of the background state
different k values to be constant, i.e.,r̄52.0.

The value ofe is fixed to 200, so that the stateuc& is
located in the middle of the background 800 states, and t
a large number of background states can be found in
neighborhood.

The coupling strengthx(k) is determined so that the sum
of v i

2 is independent ofk, and is fixed by the condition
( i51
800v i

25800. This implies that the average couplin
strength of the stateuc& to the background states remain
constant, which allows us to make a fair comparison of
results for differentk values. The resulting values ofx(k)
are 0.670, 0.714, and 0.638 fork50.0, 0.2, and 0.6, respec
tively. One may notice thatx(k) would be constant if the
number of the basis statesum& is kept equal to that of the
adopted statesu i &. We included many more states in th
former since at least for largek a mixing of the basis state
should be important to fully retain the fluctuation properti
of the eigenstates.

The strength function of the parent stateuc& is then de-
fined by
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S~E![(
n

d~E2En!Sn , ~2.7a!

Sn[ z^cun& z2, ~2.7b!

where un& denotes an eigenstate of the total system andEn
the corresponding eigenvalue.

B. Random matrix model

We consider another model for comparison, which
call the random matrix model. It is essentially the same
that used in Ref.@14#. We consider an ensemble of system
each of which is similar to the one presented above exc
for the choice of the background system. Here the ba
ground statesu i & are obtained by diagonalizing each realiz
tion of the random matrices which obey the Gaussian
thogonal ensemble~GOE! @2#. The eigenvalues of the
random matrix are distributed according to the semicir
law between2N/2 andN/2 whereN denotes the dimensio
of the matrix, and the mean level densityr̄ unity. We fix
N5Nbg5800. The energy of the parent stateuc& is fixed to
zero so that it is always located just in the middle of t
background statesu i &. As for the coupling between the sta
uc& and the background states, we take the same form as
~2.5!, and replace the statesum& with the basis states for th
diagonalization of the random matrix. The coupling stren
is fixed atx52.0 so thatr̄2(v i

253200 and is equal to that o
the model in the preceding subsection. The strength func
is again defined in the same manner.

III. STRENGTH DISTRIBUTION

A. Distribution of coupling matrix elements

We first consider the distribution of the coupling matr
elementsv i . Figure 1 shows the distribution ofv i for
k50.0, 0.2, and 0.6 and for the random matrix model. T
matrix element values fork50.0 show a concentration a
around61. This result is understood from the presence
dominant terms among the coefficients^mu i & in the sum of
Eq. ~2.6! for v i . On the contrary, the distribution fo
k50.6 is almost a Gaussian centered at zero and with w
1.0. An inspection of the expression~2.6! suggests that for
k50.6 the values of̂ mu i & are independently random an
there are no dominant terms in the sum in accordance
the central limit theorem. However, this does not imply th
the distribution of̂ mu i & itself, namely, the amplitude distri
bution of the background states, should follow a Gauss
Indeed the amplitude distribution fork50.6 has an addi-
tional peak around zero over the Gaussian-like distributi
This is different from the random matrix model where t
distribution of^mu i & as well as that ofv i follow a Gaussian.

B. Gross structure of the strength function

Figure 2 shows the strength functionS(E). In spite of the
difference in the distribution of the coupling matrix elemen
as seen above, the shapes ofS(E) look rather similar to each
other. For the sake of a quantitative discussion on the g
e
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structure of the strength function, let us consider thenth
energy central moment@15# of the strength functionME

(n),
which is defined as

ME
~n![Š~E2^E&!n‹, ~3.1!

where^En& is also defined as

^En&[E EnS~E!dE. ~3.2!

Table I lists the calculated results forME
(n) for n53 to 10 at

the three chosenk values. It includes also those for a sch
matic Lorentzian-type strength function for a comparison
is defined as

S~En![
N

~En2e!21~G/2!2
,

En5
1

2
~n21! ~n51, . . . ,801!, e5200 ~3.3!

whereG is fixed so thatME
(2)5800, andN is a normaliza-

tion constant. Because of the sum rule@16#

Š~E2^E&!n‹5^cu~H2e!nuc&, ~3.4!

the values of the average and the variance are constraine

Eave[^E&5e, sE
2[ME

~2!5(
i
v i
2 ~3.5!

and are independent of the parameterk. From Table I, we
can see that the values ofME

(n) up to n510 are similar to
each other for all threek values. We also see that thes
values are similar to those for a schematic Lorentzian-t
strength function, although we find a small deviation in t
odd and the tenth energy moments.

Since the momentME
(n) can be generally written as

ME
~n!5 f n~$ME

~m! , m,n%!1(
i
v i
2~v i2e!n22,

~3.6!

where the first term represents a polynomial function
ME

(m)’s with m,n, we can explain the above similarity o
ME

(m) by showing that the second term of Eq.~3.6! is almost
independent of the parameterk. Equation ~3.6! can be easily
verified if we rewriteME

(n) as

ME
~n!5(

i ,i 8
^cuH2eu i &^ i u~H2e!n22u i 8&^ i 8uH2euc&,

~3.7!

and decomposeME
(n) by insertinguc&^cu or ( j u j &^ j u between

H2e factors; if we insertuc&^cu more than once, we obtain
products ofME

(m) (m,n). On the other hand, if we inser
( j u j &^ j u into all places, this leads to the second term of E
~3.6!. This term is actually insensitive to the difference of t
value of k. This is because the average value ofv i

2 as a
function of energy has a similar shape independent ofk, as
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FIG. 1. Distribution of the coupling matrix elementsv i for three values ofk and also for the random matrix model. For the latter cas
the result for three choices of realization is presented. The smooth curves show a normalized Gaussian distribution having the sam
as that of thev i distribution for each case.
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can be seen in Fig. 3, which showsv dependence of the
averaged value ofv i

2 defined as

vave
2 ~v![

(
v2~1/2!dv<v i<v1~1/2!dv

v i
2

(
v2~1/2!dv<v i<v1~1/2!dv

1

. ~3.8!

Here we tookdv520. Moreover, this is also because t
local level density of the background states is independen
k. Thus we do not find significant difference in the gro
structure of the strength function as characterized by the
energy moments.
of

w

C. Strength distribution

The apparent similarity of the strength function for diffe
ent k values seen in the preceding subsection is only su
ficial. To see this let us turn our attention to the streng
distribution. The distribution is known to take the Porte
Thomas~PT! form for a pure random matrix, i.e., withou
coupling considered in this paper. In Fig. 4 we plot t
strength distribution for threek values together with the PT
shape. Although not very clear, a tendency towards the
distribution can be seen ask increases. A much clearer dif
ference can be seen if we plot the distribution of the ren
malized amplitudeAS̃n(u), where

S̃n
~u![Sn$~En2e!21~G/2!2% ~3.9!
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FIG. 2. Strength functionS(E) for the three values ofk and also for the random matrix model. For the latter case, the result for o
choice of realization is presented.
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is the strength corrected for the energy-dependent fac
This factor has been introduced to remove approximately
energy denominator contribution: if we assume constant c
pling matrix elementsv i5vc and an equal level distanc
Dc in our model, the strength function will be given b
S(E).(G/2p)/$(E2e)21(G/2)2%, where G52pvc

2/Dc

@16#. This may be contrasted to the present calculation
r.
e
u-

n

which the mean square value ofv i givesv̄ i
251 and the mean

level distance isD̄'0.5 for our model of the oscillator back
ground system, andv̄ i

254, D̄'1.0 for the random matrix
model. We thus chooseG54p and 8p, respectively, for
these models. The results are given in Fig. 5. The smo
curve shows a Gaussian distribution which would show up
chaotic systems as represented by the random matrix th
TABLE I. The nth energy moment of the strength functionME
(n) divided bysE

n .

k 3rd 4th 5th 6th 7th 8th~units of 104) 9th 10th~units of 105)

0.0 20.068 17.889 22.840 547.10 2124.78 1.9843 25664.4 7.8227
0.2 20.049 17.925 21.917 549.49 279.95 1.9980 23463.0 7.8967
0.6 20.048 17.851 21.986 545.00 286.73 1.9738 23913.3 7.7709
Lorentzian 0.0 17.530 0.0 527.86 0.0 1.8904 0.0 7.3709
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@1,2#, although the actual calculation still shows a small de
viation. The distributions fork50.0 and 0.2 are far from the
Gaussian, while that fork50.6 is much closer. A compari-
son with Fig. 1 shows that the correction factor in Eq.~3.9!
removes approximately the energy-denominator effect, lea
ing back to the coupling strength distribution which directly
depends on the dynamics of the background system. It wou
be interesting to extend this idea to a realistic system, a
though one has first to find how one can optimize paramete
such asG.

In the actual application to realistic systems, one mus
consider also the finiteness of the energy resolution, whic
we have neglected above. Can the strength distribution st
be a signature of the background dynamics even when o
cannot resolve an individual peak? In order to partly answe
this question let us consider the following distributions: de
fine xn[AS̃n(u), then consider the distribution of the follow-
ing quantity:

FIG. 3. v i
2 averaged over an energy range ofdv520 as a func-

tion of energy fork50.0, 0.2, and 0.6.
-
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ld
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yi
~N!5 (

n5N~ i21!11

Ni

xn S i51,2, . . . ,F800N G D , ~3.10!

namely, the distribution of the sum of neighboringN
strengths. Here,@j # stands for the largest integer which is n
larger thanj . To illustrate the effect of summation, let us fir
assume that the distribution ofxn follows a Gaussian,

P~1!~x!5A2

p

1

s
e2x2/2s2 S E

0

`

P~1!~x!dx51D ,
~3.11!

and that there is no correlation amongxn’s; then the distri-
bution of yi

(2) can be calculated as

P~2!~y!5E
0

`E
0

`

P~1!~x1!P
~1!~x2!d~y2x12x2!dx1dx2

5
4

ps
e2y2/4s2FAp

2
2erfcS y

2s D G , ~3.12!

where erfc(x) denotes the error function,

erfc~x![E
x

`

e2t2dt. ~3.13!

The distribution ofyi
(3) , P(3)(y), is obtained in a similar

manner. The result~3.12! and that ofP(3)(y) show that, as
one may naively anticipate, the peak ofP(2)(y) or P(3)(y) is
shifted to a larger value even if the peak ofP(1)(x) is located
at x50. The same tendency also appears in Fig. 6 where
distributions ofyi

(N) (N52,3) are shown for our model with
k50.0, 0.2, and 0.6. Although there still remains a diffe
ence, it is much more difficult to qualitatively distinguish th
graphs for differentk’s as compared to the case of Fig.
One may not be able to determine whether the deviation
the peak from zero is due to the properties of the backgro
system or poor resolution. In the case of the empirical d
the situation is more complex, because the summation of
strengths is made over a given energy interval and not wi
fixed number of levels. We suspect that the strength dis
FIG. 4. Strength distribution for the three values ofk. The smooth curves show a Porter-Thomas distribution.
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FIG. 5. DistributionP(AS̃(u)) whereS̃(u)5S„(E2e)21(G/2)2…. G is fixed to 4p for k50.0, 0.2, and 0.6 and 8p for the random matrix
model. The smooth curves show a Gaussian distribution. For the random matrix model 50 choices of realizations have been accu
n

ic
ct
2
th

he
ta
a
n
d

-
al
h
d
ent,
ics of the background system as far as the resolution is
enough to detect individual strengths.

IV. FRACTAL ANALYSIS OF THE STRENGTH
FUNCTION

The strength distribution is one of the signatures wh
characterize fluctuations of the strength function. It refle
only a part of the structure in the strength function of Fig.
For instance, it does not contain a correlation between
energy and the strength.

In this section we perform a moment analysis of t
strength function similar to the one applied for a multifrac
system@17,18#. This analysis takes into account some fe
tures of the energy-strength correlation, and therefore ca
another characteristic measure of the strength function in
ot

h
s
:
e

l
-
be
e-

pendent of the distributionP(AS̃(u)). Instead of using di-
rectly the energy eigenvalueEn and the strengthSn we con-
sider the following modified strength function:

S~ f !~E![(
n

d~E2Ẽn!S̃n , ~4.1!

whereẼn denotes the unfolded energy andS̃n the normalized
strength in Eq.~3.9! with an additional normalization condi
tion (nS̃n51. Let us now divide the whole energy interv
DE(5Ẽ801th2Ẽg.s.) into L segments each having a widt
dE5DE/L, whereẼg.s. represents the energy of the groun
state. We then sum up the strengths within each segm
giving
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FIG. 6. Distribution ofyi
(N) (N52,3) for three values ofk. The lines correspond toP(2)(y) for yi

(2) andP(3)(y) for yi
(3) and the dotted

curves a Gaussian. See text for more detail.
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Pj[ (
~ j th segment!

S̃n ~ j51, . . . ,L !, ~4.2!

with the normalization condition( j Pj51. The partition
function is defined by

xm~dE![(
j51

L

Pj
m . ~4.3!

We then study its behavior as we refine the scale, e.g.
L52→22→23, etc.

The reason we consider the modified strength funct
~4.1! instead of the original one follows. One of the purpos
of considering the partition function~4.3! is to find whether a
scaling law does hold asdE is refined or whether there ar
some typical energy lengths which lead to breaking of t
scaling law. However, there are two typical energy lengths
the original strength function, namely, the mean level d
tance and the width of the strength functionG, both of which
are out of our interest. The scaling property therefore m
be considered at larger energy resolution than the mean
distance. Besides considering the energy resolution sm
thanG, it is another method to use the normalized stren
S̃n in order to avoid the global energy variation of th
strength function. We chose the latter method in this pa
as

n
s

s
n
-

st
el
ler
h

er

because the available energy interval becomes wider than
case of the former method. Moreover, the scaling property
the partition function depends on how ‘‘the support’’~the
energy levels in the present case! is distributed as well as
how the strengths are distributed on this support. Since
would like to focus on the latter, we used the unfolded e
ergy in the definition of the modified strength function~4.1!
in order to make the support distribute uniformly. Accor
ingly the analysis adopted here can be seen as an impr
version of that in Ref.@5#.

Figure 7 shows the dependence of the partition funct
xm for m52 to 5 on the scaledE for k50.0, 0.2, and 0.6.
We also show the one for the random matrix model avera
over 50 choices of the realizations of the ensemble. The
sults show a linear dependence in the logarithmic sc
within a wide range ofdE, suggesting a scaling property o
S( f )(E). For smalldE the partition functionxm eventually
reaches a fixed value which is the consequence of the
crete spectrum in our model.

Let us consider the fractal dimensionDm defined by

Dm[ lim
dE→0

Bm~dE!

m21
, Bm~dE!5

lnxm

lndE
. ~4.4!

In practice, the expression forBm(dE) has been replaced
with the ratio of the difference of lnxm(dE) to that of lndE in



over

56 127FLUCTUATION PROPERTIES OF STRENGTH FUNCTION . . .
FIG. 7. xm(dE) versusdE for three values ofk as well as for the random matrix model. For the latter case the result of averaging
50 choices of the realization is presented. The lines correspond tom52 to 5 from the upper to the lower ones.
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the appropriate interval ofdE. The quantityDm reflects a
state-to-state fluctuation of the strength function. In Table
we showDm for m52 to 5 calculated for each line shown
Fig. 7. The interval ofdE whereDm’s are calculated is in-
dicated by a box in Fig. 7. From Table II, we find that th

TABLE II. Fractal dimensionDm (m52 to 5! at k50.0, 0.2,
and 0.6 and those for the random matrix model~RMM!.

k D2 D3 D4 D5

0.0 0.94 0.89 0.84 0.80
0.2 0.94 0.88 0.82 0.78
0.6 0.94 0.89 0.83 0.79
RMM 0.97 0.95 0.93 0.92
II
relationDm.0.9 holds for allm in the case of the random
matrix model, while for the case ofk50.0, 0.2, and 0.6, the
value ofDm decreases asm increases, suggesting a mult
fractal nature for these systems.

As mentioned in Sec. IIIC, the modified strength functi
S( f )(E) can be thought to reflect directly thei dependence of
v i
2 . Thus we also obtained the partition functionxm(d i ) for
v i
2 as a function ofd i instead ofdv in the same procedure a

the case ofS( f )(E), and also obtainedDm , which is derived
from xm(d i ). We found that the results are very similar
the case ofS( f )(E). This can be understood from Fig. 3. A
known from Fig. 3, for the case of our model with an anh
monic oscillator background,vave

2 shows the samev depen-
dence independent of the value ofk. For the case of the
random matrix model, however, there is no such depende
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of v i
2 on v; the averaged value ofv i

2 is independent ofv.
This difference ofv dependence~or i dependence! of v i

2

between our model and the random matrix model is reflec
in the difference of the behavior ofDm between them. Thus
it may not be adequate to use the word multifractal for o
model, because the behavior ofDm in our model only re-
flects the smooth energy variation ofv i

2 .
The studies in this section suggest that it is difficult to fi

out the difference of dynamics of background system in
behavior of the partition functionxm(dE) for m>2 at dE,
the value of which is larger than the mean level distan
because the energy dependence of the averagedv i

2 does not
depend on the value ofk. Nevertheless, the studies sugge
that we can find the difference between the dynamically c
otic case and the case of the random matrix model in
fluctuation of the strength function by means of the analy
in this section.

V. FOURIER ANALYSIS

In this section we study the Fourier transform of t
strength function which provides another measure of
energy-strength correlation of the dynamical system@19#.
Moreover, this quantity is expected to be insensitive to
experimental resolution of the energy spectrum@6#.

We define the Fourier transform of the modified stren
function defined in the preceding section as

C~ t !5E dE e2 iEtS~ f !~E!. ~5.1!

In the following, we consider the square ofC(t); it is given
by

uC~ t !u25(
n

S̃n
212 (

n.n8
S̃nS̃n8cos~Ẽn2Ẽn8!t

5E dv e2 ivtA~v!, ~5.2!

where

A~v!5E dE S~ f !~v1E!S~ f !~E! ~5.3!

is the autocorrelation function of the strength function. T
quantity~5.2! would be the survival probability of the syste
to remain at the initial stateuc& after time t if one uses the
original strength function instead ofS( f ).

The properties of the square of the Fourier transform h
recently been studied numerically as well as analytically
certain systems@6,19–23#. It was shown especially that ther
occurred a correlation hole at smallt when the system has
chaotic spectrum. For a regular spectrum, in contrast,
quantity has shown a monotonic decrease to its asymp
value. In the present model system it is nota priori evident if
a similar feature may be obtained. Here we are intereste
the strength function of a state which couples to the ba
d

r

e

,

t
-
e
is

e

e

h

e

e
n

e
tic

in
-

ground system, while previous works~on uncoupled sys-
tems! have studied, in a sense, the wave functions of
background system itself.

Figure 8 shows the square of the Fourier transfo
~smoothed overdt50.1) for the three values ofk and for the
random matrix model. In the latter case an average ove
choices of the realizations has been made. We notice tha
the background system changes from regular to chaotic
havior the correlation hole becomes deeper in accorda
with the findings of the previous works. According to Re
@22#, where a survival probability of a two-dimensional d
namical system was studied, its asymptotic value beco
smaller when the system becomes more chaotic. On the o
hand, in our model where the parent state couples wit
two-dimensional dynamical system, the asymptotic value
Eq. ~5.2! becomes larger when the system becomes m
chaotic. This contrasted result may be understood as follo
the inverse of the asymptotic value can be considered a
effective number of states to which the stateuc& decays. In
our model, this state couples with all the basis vectors of
background system with equal strengths. This feature d
not change very much for regular systems even after
diagonalization of the background system as seen in the
tribution of the coupling matrix elementsv i . The basis vec-
tors of the background system, however, will be consid
ably mixed up for chaotic systems, causing a lar
fluctuation in the coupling. This will result in the reductio
of the effective number of states with which our stateuc&
couples. Note that the behavior of asymptotic value depe
on the choice of the coupling Hamiltonian.

A remark is in order. We did not see a correlation ho
when we performed a Fourier transform of the origin
strength function instead ofS( f )(E). This may be contrasted
to the correlation hole that appeared when we performed
Fourier transform of the strength function with unfolded e
ergies and constant strength.

VI. SUMMARY

We adopted a model where a parent state couples wi
large number of background states. We took as the ba
ground system a coupled two-dimensional anharmonic os
lator. The dynamics of this background system have b
chosen classically integrable, irregular, or chaotic by cha
ing a single parameter. We studied a strength function of
parent state, paying attention to its fluctuation properties
order to find out whether differences of the dynamical pro
erties of the background system could be reflected in
strength function.

First we studied some properties of the coupling mat
elements between the parent state and the background s
The distribution of the coupling matrix elements is differe
when the dynamics of the background is different.

We investigated several quantities reflecting a gross st
ture as well as different aspects of the fluctuation proper
of the strength function. For a quantitative discussion o
gross structure of the strength function, we considered
energy moments of the strength function, and found t
there are no differences. We then studied the distribution
the strength. When the background system is classically c
otic, the strength distribution follows a Gaussian similar
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FIG. 8. Square of the Fourier transform smoothed overdt50.1 of the strength function with unfolded energy and modified strengt
a function of time~measured in unit of 2p) for three values ofk and also for the random matrix model~average of 50 cases!. The horizontal
lines denote asymptotic values which correspond to the first term of Eq.~5.2!, and are 0.0019, 0.0026, 0.0032, and 0.0038 for the above
cases, respectively.
,
ul
a
ts
nc
so
io
u
th
,
e
d
tio
y

nte-
ns-
ted
the
ger
ha-
ev-
s in
rge
ber

on
ck-
ese
the case of the random matrix model. On the other hand
the background system becomes more integrable or reg
it deviates more from a Gaussian. This result is directly
tributed to the distribution of the coupling matrix elemen
Next we performed a moment analysis of the strength fu
tion based on the partition function. When the energy re
lution is larger than the mean level distance, the partit
function reflects only the global energy variation of the co
pling matrix elements thus showing no dependence on
parameter of the background system. On the other hand
means of the same analysis we found the difference betw
the chaotic case and the case of the random matrix mo
We also studied the Fourier transform of the autocorrela
function of the strength function. It is found that as the d
as
ar,
t-
.
-
-
n
-
e
by
en
el.
n
-

namical nature of the background system changes from i
grable to chaotic, the correlation hole of the Fourier tra
form becomes deeper. The correlation hole is actually rela
to the spacing of unfolded levels. We also found that
asymptotic value of the Fourier transform becomes lar
when the dynamics of the background becomes more c
otic. This is because when the parent state couples with
ery unperturbed background state with equal strength a
our model, the chaoticity of the background causes a la
fluctuation in the coupling and reduces the effective num
of states to which the parent state decays.

We stress that the above conclusions depend strongly
the coupling Hamiltonian of the parent state and the ba
ground system. In this paper we took one ansatz as th
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couplings. Other choices may give rise to different results
the fluctuation characteristics. For instance, if the parent s
couples to only one unperturbed background state, the di
bution of coupling matrix elements becomes equal to tha
amplitudes of background states, leading to a differ
strength distribution from that of this paper.

For an application to realistic response phenomena s
as giant resonances in nuclei, one must accordingly mo
the model. The number of states which couple to the ba
ground system must be increased, and the collective s
which is constructed as a superposition of these states sh
98

-
,
ol

y

r
te
ri-
f
t

ch
fy
k-
te
uld

be considered. A study of such systems composed of m
states coupling to a background system is now in progre
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